Gallery of photos

Manually Processing Comet Images

Looking back, the “Great comet of 2020″ C/2020 F3 NEOWISE was a fantastic sight and well worth the 3am alarm to snap some photos back in July. But comet images are notoriously difficult to work with. Should I also add that in older times, comets were often seen as a bad omen, the bearer of bad news? Cough, cough COVID-19 cough…

Anyways, back to astronomy… There are essentially two types of photo registration (alignment) software out there: 1) Deep Sky which uses pin-point stars to perform alignment; 2) Lunar/Planetary uses the large “disk” of a planet or Moon to align based on surface details.

So when you capture long wispy comets like the RAW image below, software like DSS or Registax just can’t cope.

RAW image : Canon 80D 300mm f/5.6 5 seconds exposure at ISO3200 (09-jul-2020)

I turned to standard photo-editing software for a manual alignment and stacking. This is essentially opening one “base” image and then adding a 2nd image as a new layer. I change that 2nd layer to be overlaid as a “Difference” and manually align this 2nd layer to match the base layer. Once that is done I change the layer mode to Addition, and then hide this 2nd layer. Repeat the steps for a 3rd, 4th, 5th, etc. layers until you’ve added all your images. Always aligning with the “base” image to ensure no drift.

If you simply add all those layers up, you will get one very bright image because you are adding pixel intensities. You can do that and then work with the Levels and Curves to bring it back down, or if like me, working with GIMP, then use the Py-Astro plug-ins to do the merging and intensity scaling in a single step with a Merge all layers. Py-Astro can be downloaded here. I haven’t explored all that the plugins have to offer, that will hopefully be in another blog.

Stacking 11 individual frames results in an improvement over a single RAW image (image below). With the stacked image, I’m able to work with the intensities to darken the sky while keeping the comet tail bright.

After merging 11 images manually aligned in GIMP

However the sky gradient is pretty bad, due to the camera lens and because at 4am the sun is starting to shine on the horizon. So off to IRIS to correct the background gradient. From GIMP I save the files as a 16BIT FIT that I can use in IRIS. For steps on how to do this, see my blog about how to remove the sky gradient.

After a quick spin in IRIS, I’m back in GIMP for final color and intensity adjustments, I boosted the BLUE layer and adjusted the dark levels for a darker sky.

C/2020 F3 NEOWISE from 09-JUL-2020 by Benoit Guertin
Final Processed image of C/2020 F3 NEOWISE from 09-JUL-2020

“7 Minutes of Terror”

The folks at JPL created a short film showcasing Perseverance’s critical descent phase for the Mars landing. If everything goes according to plan, we shall have a new rover on Mars at 3:40pm EST on February 18, 2021.

Perseverance is currently “cruising” at 84,600km/h through space with Mars as a target. To give you an idea of what kind of speed that is, here are a few benchmarks:

  • The fastest commercial jet: the Concord flying at Mach 2.04 is just under 2,200km/h
  • Space Shuttle re-entry speed: 28,100km/h
  • Voyager 1, leaving our solar system : 61,500 km/h
  • Parker Solar Probe (fastest man-made object) : +250,000km/h

Perseverance was launched on July 30th, 2020 from Cape Canaveral Air Force Station, Florida, on top of a Atlas V-541 rocket.

Animation of Mars 2020’s trajectory around Sun, Data source: HORIZONS System, JPL, NASA

The only way the rover will be able to decelerate from its current cruising speed is by plunging into the Martian atmosphere at the right angle and using the atmospheric friction to slow it down. That “7 minutes of terror” is the time the rover will spend on re-entry, from approaching Mars at the right angle, to landing in the desired spot on the Martian surface.

Lots of steps need to go right, timed correctly to have a successful landing. Only 22 of the 45 landers sent to Mars have survived a landing. The US is by far the country with the most success (sorry Russia, you’re space program is awesome, but you suck at landing on Mars)

Glancing up at the night sky that February 18, 2021 evening will be very easy to spot Mars, but also the Pleiades star cluster (Messier 45). Mars will be about 5 degrees north of a almost half-illuminated moon. And if you keep looking higher up by 10 degrees you’ll see the famous open star cluster nicknamed the Seven Sisters, also used as the Subaru emblem.