Moon and Venus on May 17th

Came home from my piano lesson (yes you can still learn a new instrument past 40) and the sight of a 2-day old Moon and Venus in the dusk sky was stunning. Unfortunately by the time I got home to grab the camera, the sky had darken quite a bit, so I lost my opportunity for some color in the photo.

Venus 6 degrees from the Moon (May 17, 2018) - Benoit Guertin

Venus 6 degrees from the Moon (May 17, 2018) – Benoit Guertin

While I did take more close-up photos, I find adding the rooftop in the foreground helps establish scale.

Notice the Earthshine, it was easily picked up to naked eye.

Canon 80D
85mm F/8
ISO3200 (1/15sec)

Constellations at the Zenith

We don’t often look “straight up”. Unless you are laying down, it’s not a comfortable viewing position. However there is lots to see and the Big Dipper (Ursa Major) is right overhead this time of year.

Setting up a camera with a 10 second exposure can capture quite a good deal of the sky, and you don’t have to worry too much about star trails. What stands out is the large variations in the colors of stars, from cooler deep reds, to hot bright blues.

Constellation Near Zenith 08May2018

Constellations right above in the May evening.

17mm f/4
Canon 80D (ISO 3200)
12 x 10sec (2 minutes)

This Weekend – Beehive Cluster

The Beehive cluster, also known as Messier 44 (M44) is one of the nearest open clusters, and therefore one of the largest in the night sky. While open clusters are often too dim to be seen with the naked eye, all you need is a pair of binoculars or a camera with long exposure to see it.

What makes this weekend special is that in the night of the 22nd to 23rd of April, the Moon will pass within 1-1/2 degrees of this cluster.  So finding it will be child’s play.

Messier 44 - Open Cluster

Messier 44 – Open Cluster Benoit Guertin

On April 22nd, simply look for the Moon once the sky is dark, and just above it you will find the Beehive cluster with its 1000+ stars. OK, even with a telescope you won’t be able to see all the stars, but take some time to notice how this group of stars stands out with regards to background stars further away in our galaxy. And while you are at it, consider that nearly 410 years ago, Galileo made the first observation of these stars.

M44_Moon_22Apr2018

From there you can also hop over a to the west and observe the color difference in bright stars Castor and Pollux in the Constellation Gemini. And if you instead decide to go east, the smaller Messier 67 open cluster is also accessible with binoculars.

Blue Moon Lunar Eclipse

The second Full Moon in a month is generally called a Blue Moon. And yes the old saying “once in a Blue Moon” is in reference to this rare event.  Well… if you consider every 2 to 3 years rare. However this one will be extra special because it won’t be blue at all!  It’ll be blood-red because we’ll have a lunar eclipse on our hands!

LunarEclipse_27sep2015

September 27th 2015 Lunar Eclipse

The lunar eclipse will be visible from most of North America, but people out West will be better placed to see it.  In the East, the we’ll only get a partial eclipse as the moon sets in the early morning on Wednesday the January 31st around 6:48am EST.

If you do plan to photograph a lunar eclipse, a tripod is strongly advised, and if you are using a telescope, an equatorial mount is required. The above photo is a single frame at 2.5 second exposure and ISO400 with a Skywatcher 80ED. Yes those are a few stars popping into view during the eclipse.

 

 

 

Star Trails, Plane, Meteor and Cosmic Ray

Simply setting up a camera to take a series of images of the night sky can pick up a lot more than a few stars.

trails_secondaries_smallIf you have a wide-angle lens, and live near a large city there is a good chance that some aircraft will fly into the field of view.  The linear streak and alternating lights are a dead give-away of a plane having crossed the camera’s field of view.  If you don’t have the alternating lights, it’s mostlikely an orbiting satellite reflecting sunlight.

Meteors are also somewhat of a common occurrence.  These are easily recognized by their characteristic increasing than decreasing brightness as they burn up in the upper atmosphere. The meteor in the image above is from the Geminid shower.

The last artifact comes for outside our solar system, it is cosmic rays.  The CCD or CMOS sensor of your camera works by performing an electric read-out of photons captured by the lens.  Cosmic rays are high-energy sub-atomic particles that have traveled through space and managed to make it through the atmosphere down to us.  The one in the photo above just happens to hit my camera sensor.  As the near light-speed sub-atomic particle smashes into atoms on the sensor it looses energy, freeing up electrons which register as “light” by the CCD.  Most of the time the cosmic ray will hit the sensor straight on,  but sometimes it impacts at a shallow angle and causes a series of pixels to “light” up, as in the photo above.

Take time to examine your photos, you never know what surprises you may find.

Setup for the Geminids

With the Geminids peaking tonight and a clear sky after two nights of snow, I charged the camera battery and got a quick setup going to take some pictures of the sky.  As for any nigh sky photo, both lens stabilizer and auto-focus is set to OFF and focused manually at infinity. Then found a corner of the yard shielded from stray lights and planted the tripod, roughly aiming the camera 70deg up and pointing east (the constellation Gemini was rising at 10pm).

However at -15C outside, the old battery wouldn’t last very long.  I left it running for about 30 minutes, taking 20 seconds exposure at ISO 800 with a 17mm F4 lens.  The camera is now thawing (covered with frost after bringing it indoors) and will wait until tomorrow before checking the pictures out.

Setup for the 2017 Geminids

Setup for the 2017 Geminids

In the brief moments that I was outside I caught a 2-3 meteors and one really bright one (easily visual magnitude -4). So even living in the city, the Geminids are visible and accessible to all.  With my feet deep in snow I wasn’t dressed well enough to hang around in the cold wind to watch the show for long. So I hope the camera managed to capture a few.

Watching the Geminids

It’s that time of  the year again: the Geminid meteor shower. It is visible almost all the month of December, however the best and peak viewing, with up to 120 meteors an hour, is between December 12 and 15.  It should be a good year because we are heading towards a new Moon on December 18th, so no bright moon to ruin the show.

This meteor shower is called the Geminid because the radiant (apparent direction of travel in the sky) of the meteors is centered on the constellation Gemini.  However the source of the debris is not a comet like most other meteor showers, but an asteroid: 3200 Phaethon. The asteroid and orbit were discovered in 1983 and is too good of a match with the Geminids to be anything other than the source of the debris. However its makeup is closer to asteroid belt material, so it may very well be a 5km chunk from a larger asteroid, with all the associated debris.

To watch the Geminids, the best time is past midnight as the constellation will rise east around 10pm.  The higher it is in the sky the better. The Geminids do regularly create fireballs: bright displays that can exhibit colour and even leave a smokey trail, so observation even in light polluted city sky is possible.

Here are some tips for the observation:

  1. Dress to be warm.  You’ll be sitting still in the cold night. Nothing will get you indoors faster than the shivering knowing that warmth is only a few feet away.
  2. Lay down or recline in a chair.  Standing and looking straight up is very uncomfortable and quite the strain on the neck.
  3. Give yourself a good 15 minutes for your eyes to adjust to the darkness  If you give up after 2-3 minutes, your eyes are still adapting to night vision and will miss the fainter meteors.
  4. Find a spot away from sources of lights.  Of course heading out of the city is best, but if you can’t, just find a spot in your backyard without the glare of street lights and neighbors’ porch lights. That also means no electronic screens to ruin your night vision.

You can also setup a camera on a tripod to see if you capture some of the meteors. Grab a short focal length, remove auto-focus and go for a 10-20 second exposure setting.

Clear skies!